

Beyond TRL: A Revised Model of Technology Development and Considerations for Programmatic Analysis

Prof. Zoe Szajnfarber

Assistant Professor of Engineering Management & Systems Engineering and Space Policy, The George Washington University

Research Affiliate, MIT Engineering Systems Division

NASA Cost Symposium

NASA Langley – August 14, 2014

On Technology Cost Estimating

- Technology development— or the focused long term development of is a major part of R&D at NASA.
- Technology Cost Estimating is a relatively unexamined field in the academic literature on cost estimating
- NASAs recent efforts to fund technology cost estimating research have been helpful in understanding how technology develops (Cole et al 2013, 2014)
- Our focus is not on technology cost estimating: we study the process of technology development itself
 - However, we hope our research can provide insight for the cost and scheduling community

History of Shifts in R&D Strategy

(Based on data collected for NASA R&T Study and NRC study of NIAC)

NEED: To control the system better, we need to understand it better.

Guiding Research Questions

NEED: To control the system better, we need to understand it better.

- 1. How do new capabilities traverse the innovation system as they are matured and infused into flight projects?
 - Empirically grounded models of the innovation process
 - Considers technical, social and political factors
 - Can this process be predicted/estimated?
- 2. To what extent can the process be improved through feasible management interventions?
 - Exploring organization configuration as a design lever
 - Design for evolvability/tinkerability
 - Improved incentive systems, based on valid preference structures.
 - Balanced technology investment strategies that acknowledge key attributes of space innovation ecosystem

NASA Innovation Landscape

Political-level context

Agency-level planning

Project-level Development & Implementation

Technology-level Research & Development

Scientific and Technical State-of-the-art

NASA (Space Science) Innovation Landscape

Political-level context

Scientific and Technical State-of-the-art

Current Conceptualization: Stage-Gates

*Synthesized from NASA strategic planning documents 1990-2006

Actual Complexity of Process

Stage-Gate Assumptions

Underlying assumptions:

- (1) Technologies mature from left to right over time;
- (2) Stages are mutually exclusive (at a given time);
- (3) **Shelving** is an <u>active process</u>, controlled by decision makers;
- (4) **Shelf life** is <u>passive</u> and a function of technical obsolescence.

Switchbacks in Maturity

Switchbacks in Maturity

Passive Gates, Active Shelves

- Expectation (assumptions #3 and 4):
 - 3. Rejection at Gate => Shelving
 - 4. Similar shelf lives for similar technologies
- Observation:

Case	Rejected + Shelf	Rejected + !Shelf	!Rejected + Shelf	Duration on Shelf
Tech A	1	1	1	8 /1yrs
Tech B	0	2	1	5 yrs
Tech C	0	3	0	N/A
Tech D	0	2	1	2 yrs
Tech E	1	Multiple	1	2 / 5 yrs
Tech F	0	multiple	0	N/A

Szajnfarber, Z., and Weigel, A. L. (2012). "Managing Complex Technology Innovation: the need to move beyond stages and gates" International Journal of Space Technology Management and Innovation, 2(1), 30-48

Need: More nuanced understanding of underlying processes

Building Theory from Case Studies

Epoch-Shock Model: Track View

System exhibits epochs of persistent stable (and identifiable) behaviors

- Epochs are illustrated as boxes, and roughly map to stages
- Shocks induce transitions following arrows from one box to another

Epoch-Shock Model: Track View

 System exhibits epochs of persistent stable (and identifiable) behaviors punctuated by transition inducing shocks

		Case	Funding	Personnel	Technology
Gesta CADR#1 CZT#2 Pol#3 Si#4		CADR#1	4xCenter	team + Inst - Tech	parallel component paths
		CZT#2	3xCenter + 3xNASA + Balloon	team +4xTech +Inst	multiple technique strategies
		Pol#3	Brainstorm + 2xCenter + 3xNASA	team + Tech	multiple readout strategies
Technology Exp	Si#4	NASA + Project	team + 3xInst + Tech - 3xObs	multiple materials and techniques tried	
	Si#5	2xCenter + 2xNASA + Sounding Rocket + Project	team + Tech	multiple materials and techniques tried	
Ĕ		Si#6	2xCenter + NASA + SR +2xProject	no change	multiple readout strategies and techniques tried
		TES#7	Branch +3xCenter + 2xNASA + SR + Project	team + Tech	Exploration of new materials and techniques

Epoch-Shock Model: Track View

 System exhibits epochs of persistent stable (and identifiable) behaviors punctuated by transition inducing shocks

- Epochs are illustrated as boxes, and roughly map to stages
- Shocks induce transitions following arrows from one box to another
- Innovation pathways start in gestation and move through the system.

Epoch-Shock Model: Paths Traveled

Overlay of ALL the transitions from the pathways studied

- Bi-directional and heavy flow between Technology and Architectural exploration.
- Flow through Exploitation forks between Treading Water and Flight

Epoch-Shock Model: Paths Traveled

- Colors differentiate different types of shocks, some of which are more controllable by management interventions
- Combined shocks are possible (e.g., red + blue = purple)

Implications:

Stage-Gate-based management strategies suppress important dynamics. The Epoch-Shock view provides a basis for feasible, productive intervention.

Why Stage-Gates Can't Work

Current control mechanisms

- 1. Proportionally more funding for basic R&D to increase pool of early-stage concepts.
- Used gate decisions to control % progression to next stage.

Assessment based on Epoch-Shock model

- 1. Resources can't be earmarked for "early stage/basic." In practice that funding stream is split between basic concepts and others that are treading water and branching out.
- 2. Actively controllable gates don't exist. Winnowing happens based on the co-timing of a technical breakthrough (unpredictable) and the next relevant mission call (semi-cyclical).

Rethinking the Management Problem

Basic insight:

- As long as innovation occurs at multiple technical levels simultaneously, and innovating teams can choose to draw resources from multiple institutional levels
- Current management strategies can't work as intended!
- Epoch-Shock formulation provides a basis for rethinking the management problem:
 - Some shocks can be harnessed as management levers: exploring predictability and influenceability.
 - The work environment can be designed, to encourage desirable interactions and collaborations: exploring incentive systems and organizational/architectural interactions

Implications for Cost & Schedule Analysts

- A key part of TRL analysis depends on the stage gate model of innovation
 - -Thinking in terms of the epoch shock model may help point analysts to more complex nuances that they need to study and evaluate.
- •A key part of estimating an individual technology depends on the depends on the broader tech ecosystem
 - Our cases showed that funding for these projects came from a variety of funding sources at multiple levels
- •The process of technology development takes much longer than expected

Thanks for your attention. Comments welcome.

SzajnLab@GW

Professor Zoe Szajnfarber E-mail: zszajnfa@gwu.edu

Web: www.seas.gwu.edu/~zszajnfa

Thanks to our sponsors:

